TD 9: Fonctions usuelles Indication

Fonctions puissances, exponentielle, etc.

Soit f la fonction définie pour tout $x \in \mathbb{R}^*_{\perp}$ par $f(x) = x^x$. Par une étude de fonction, montrer que f admet un minimum sur \mathbb{R}^*_{\perp} . Donner la valeur du minimum ainsi que le ou les points en lesquels il est atteint. Passer par la forme exponentielle! Le reste est trivial.

2 \(\psi\) Déterminer, lorsqu'elles existent, les limites des fonctions suivantes, aux points indiqués.

1)
$$x \mapsto \frac{\ln x}{x^2}$$
 en $+\infty$.

1)
$$x \mapsto \frac{\ln x}{x^2}$$
 en $+\infty$. 3) $x \mapsto \ln|x| \times e^{\frac{1}{x}}$ en $-\infty$.

2)
$$x \mapsto xe^{\frac{1}{x}} \text{ en } 0^+$$

2)
$$x \mapsto xe^{\frac{1}{x}} \text{ en } 0^+$$
. 4) $x \mapsto (1+x)^{\frac{1}{x^2}} \text{ en } 0^+$.

5)
$$x \mapsto \frac{1}{x} \ln(1 + e^x)$$
 en $+\infty$.

6)
$$x \mapsto \exp\left(-\frac{1}{x^3}\right) \times \ln x \text{ en } 0^+.$$

Il faudra parfois se ramener aux croissances comparées, parfois non. Une simple réécriture permet parfois de conclure.

 $\mathbf{3}$ $\star\star$ Résoudre dans \mathbb{R} les (in)équations suivantes:

1)
$$2e^{3x} - 5e^{2x} + 2e^x \le 0$$

2)
$$\ln(3-x) + \ln(2) - 2\ln(x+1) > 0$$

3)
$$x^{\sqrt{x}} = \sqrt{x}^x$$

Cet exercice nécessite des techniques de résolution déjà connues : changer d'inconnue, faire des réécritures, isoler x, etc.

4 \bigstar Résoudre dans \mathbb{R}^2 les systèmes suivants :

$$\begin{cases} x+y = 7 \\ \ln x + \ln y = 10 \end{cases} \text{ et } \begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

Pour le premier système, on peut commencer par remarquer que $\ln x + \ln y = \ln(xy)$. On peut ensuite se ramener à un type de système qu'on sait résoudre avec la bonne méthode...

Fonctions trigonométriques

Simplifier les expressions suivantes :

1)
$$\arccos\left(-\frac{\sqrt{3}}{2}\right)$$

- 4) cos(2 arcsin x)
- 5) $tan(2 \arctan x)$
- 2) $\arctan\left(\tan\left(\frac{9\pi}{4}\right)\right)$ 6) $\sin(2\arctan x)$ 7) $\cos^2(\arctan x)$
- 3) cos(2 arccos x)
- 8) tan(arcsin x)

À l'exception des deux premiers calculs, il faut exploiter la bonne formule trigonométrique (pour cos, sin et tan). Par exemple pour $\sin(2\arctan x)$, connait-on une formule qui exprime $\sin(2\theta)$ en fonction de $\tan \theta$?

6) $\star\star$ Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

Calculer $\sum_{k=0}^{n} \operatorname{ch}(kx)$. En déduire $\sum_{k=0}^{n} k \operatorname{sh}(kx)$ Ne pas oublier que $e^{kx} = (e^x)^k$!

7 $\star\star$ Montrer que la fonction sh : $\mathbb{R} \to \mathbb{R}$ est une bijection. On notera argsh sa bijection réciproque.

- 1) Montrer que la fonction argsh est dérivable sur \mathbb{R} , et calculer sa dérivée. Dresser le tableau de variations de la fonction argsh.
- 2) Montrer que pour tout $x \in \mathbb{R}$,

$$\operatorname{argsh}(x) = \ln(x + \sqrt{x^2 + 1})$$

Il faut suivre le même cheminement que celui vu en cours pour définir arcsin, arccos ou arctan.

8 \ \ \ On souhaite montrer de deux façons différentes l'identité:

$$\forall x \in [-1,1]$$
 $\arccos x + \arcsin x = \frac{\pi}{2}$

- 1) On pose $f: x \mapsto \arccos x + \arcsin x$. Dériver f et en déduire le résultat voulu.
- (a) Montrer que pour tout $x \in [-1,1]$, il existe $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $x = \sin y$.
 - (b) En déduire le résultat voulu.

Pour le 1), la résolution est clairement guidée, mais attention à la rigueur! Le diable est dans les détails...

Pour 2)b), on est bloqué avec un $\arccos(\sin y)$... Mais on peut par exemple réécrire $\sin y$ autrement, pour pouvoir appliquer une formule connue avec arccos.

membres, a-t-on bien équivalence ? Si on n'a pas équivalence pour tous les x, alors on disjoint les cas pour progresser.

Avoir en tête les graphes de arccos, arcsin et arctan est également crucial.

9 ★ Démontrer que :

$$\forall x \in \mathbb{R}_+^* \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

Obtenir une formule similaire pour $x \in \mathbb{R}^*$.

Pour montrer qu'une expression qui dépend de x est en fait constante, il est souvent profitable de considérer cette expression comme une fonction et la dériver.

10 \bigstar Soit $a, b \in D_{tan}$ tels que $a + b \in D_{tan}$.

- 1) Rappeler la formule qui exprime tan(a+b) en fonction de tan a et de tan b.
- 2) En déduire $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)$. La seule difficulté consiste à se rappeler des formules utiles.

11 ***

- 1) Peut-on trouver une fonction $f : \mathbb{R} \to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $f(\operatorname{ch}(x)) = e^x$?
- 2) Peut-on trouver une fonction $f : \mathbb{R} \to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $f(\operatorname{sh}(x)) = e^x$?

Noter que cela revient à avoir $f \circ ch = \exp...$ Toute propriété de *l'application* exp doit donc être partagée avec l'application $f \circ ch$.

 $Idem pour f \circ sh = exp$

12 $\star\star\star$ Résoudre dans $\mathbb R$ les équations suivantes :

- 1) $\arccos x = \arcsin(2x)$
- 2) $\arctan(2x) = \arcsin x$
- 3) $\arcsin(\tan x) = x$
- 4) $\arctan x + \arctan(2x) = \frac{\pi}{4}$
- 5) $\arcsin(x+1) \arcsin x = \frac{\pi}{3}$

Cet exercice est avant toute chose un test de rigueur. Pour quels *x* est-ce que ces équations ont un sens ? Si on applique une fonction comme sin ou tan aux deux